High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.

نویسندگان

  • Tohid Fatanat Didar
  • Kebin Li
  • Maryam Tabrizian
  • Teodor Veres
چکیده

We present an integrated thermoplastic elastomer (TPE) based multilayer microfluidic device with an embedded peristaltic micropump and through-holes membrane for high throughput particle sorting and separation. Fluidic and pneumatic layers of the device were fabricated using hot-embossing lithography and commercially available polycarbonate membranes were succcessfully sandwiched between two thermoplastic elastomer fluidic layers integrated to a peristaltic micropumping layer. The integrated peristaltic micropump induces turbulence at the top-microfluidic layer ring which successfully avoids particle aggregation and membrane blocking even at nanorange size. We present herein the general design of the device structure and pumping characteristics for three devices with membrane pore sizes of 10 μm, 5 μm and 800 nm. By using this design we have successfully demonstrated a separation efficiency as high as 99% of polystyrene microbeads with different sizes and most importantly the separation of 390 nm particles from 2 μm beads was achieved. Using this device, we were also able to separate red blood cells with size of about 6-8 μm from osteoblasts typically larger than 10 μm to demonstrate the potential applicability of this platform for biological samples. The produced microfluidic chip operating at flow rates up to 100 μl min(-1) allows us to achieve efficient high-throughput sorting and separation of target particles/cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device.

Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. Th...

متن کامل

Microfluidic Pumping based on Traveling-Wave Dielectrophoresis

This paper presents a microfluidic pumping approach using traveling-wave dielectrophoresis (twDEP) of microparticles. With this approach, the flow is generated directly in the microfluidic devices by inducing strong electromechanical effects in the fluid using integrated microelectrodes. The fluidic driving mechanisms due to the particle-fluid and particle-particle interactions under twDEP are ...

متن کامل

Integrated acoustic and magnetic separation in microfluidic channels.

With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column-based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic an...

متن کامل

Microfluidic Hydrodynamic Cell Separation: A Review

Microfluidic continuous cell separation based on hydrodynamic interaction in a microfluidic channel has attracted attention because of its robustness, high throughput and cell viability. This paper systematically gives an overview on recent advances in hydrodynamic particle and cell separation in microfluidic devices. It presents the basic ideas and fluid mechanics for the hydrodynamic interact...

متن کامل

Control of Interparticle Spacing Using Structured Microfluidic Channels

We report a technique for controlling interparticle spacing and position for inertially-focused particles at high concentrations using structured microfluidic channels. Particle control in flow holds many applications in the development of more efficient microfluidic platforms such as in particle encapsulation for droplet microfluidics, particle separation techniques, and high-throughput flow c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 13 13  شماره 

صفحات  -

تاریخ انتشار 2013